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Abstract

Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The
analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the
hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined
thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.
Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies
remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate’s theory) demonstrates a target
resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving
penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength
at the Hugoniot Elastic Limit (HEL) only in the latter. In contrast, in the former (i.e., hypervelocity and thick target) experiments, the current
analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from
microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.
Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.

Keywords: Ceramics; Terminal ballistics; Armor; Dimensional analysis; Hydrodynamics

1. Introduction

Ceramic materials are of keen interest for use in modern
armor systems because of their high hardness, high stiffness,
and relatively low mass density relative to traditional armor
steels, for example. As reviewed in Reference 1, ceramic mate-
rials have been considered for personal and vehicular protection
systems since the mid 20th century. Popular candidate ceramics
for such systems include alumina, aluminum nitride, boron
carbide, silicon carbide, and titanium diboride, among others
(e.g., transparent spinels [2] and glass [3]). Despite significant
research progress, precise relationships among (micro)struc-
tures, properties, and dynamic performance of these often
complex materials remain undefined or even contradictory
among collective findings of the engineering mechanics, mate-
rials science, and condensed matter physics communities.

A number of different experimental methods have been
devised over the past six decades that probe properties or per-
formance of ceramic materials at very high rates of loading
pertinent to armor applications. These experiments involve
impact and/or penetration of ceramic targets and commensurate
shock wave propagation, progressive material degradation, and
material failure. Two particular experimental target configura-
tions are of primary interest in this work. The first, as explained
in detail in References 4 and 5, consists of one or more ceramic
tiles backed by a semi-infinite metal block. Performance of
the ceramic armor tiles is measured by the depth of penetration
of the projectile, often either a metallic bullet or rather short
rod, into the backing metal. The second, also described in
Reference 4 as well as References 6 and 7 involves thick
(effectively semi-infinite) cylindrical ceramic targets confined
laterally, with or without a metallic cover plate. Performance
of the thick ceramic is measured via depth of penetration
of the projectile, often a metallic long rod. Dwell and
interface defeat may be observed if the projectile velocity
is too low to enable penetration into a hard, confined ceramic
[7].
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A vast ensemble of models have been developed, often in
conjunction with experimental methods, for describing the
mechanical response of armor ceramics. These can be orga-
nized in terms of scale of resolution. Quantum mechanical
representations incorporating density functional theory [8,9]
have enabled quantification of fundamental elastic and fracture
properties of ceramic crystals and interfaces, as have empirical
lattice statics/dynamics calculations [10]. Mesoscale calcula-
tions [11–13] incorporating cohesive finite elements [14–16] or
phase field representations [17,18] enable description of the
effects of microstructure such as grain sizes and orientations on
the response of ceramic polycrystals. Macroscopic constitutive
models are used in hydrocodes for computing the response of
protection systems subjected to impact, blast, and perforation.
These models may be empirical [19–23] or based on micro-
mechanical principles [24–26]. One-dimensional finite crystal
mechanics models have also been developed for addressing
planar shock experiments [27–31]. Finally, analytical penetra-
tion models based on a one-dimensional momentum balance
and various simplifying assumptions have been invoked to
describe mechanics of shaped charge jets [32–34] and long rods
[35–38] piercing thick ductile metallic targets. These models,
which tend to reduce to a Bernoulli-type equation at the stag-
nation point of impact, will be critically reviewed later in the
present work.

The present paper provides a new description of penetration
of semi-infinite ceramic targets by metallic long-rod projectiles
using dimensional analysis with application to literature data
[6,39–41]. This paper extends prior recent work [5] that
addressed, in an empirical manner, the first experimental con-
figuration discussed above, i.e., metal-backed ceramic tiles. The
present work includes new comparison of dimensional analysis
with some one-dimensional penetration theories [35,36,42] for
example providing contextual insight into the target resistance
term in Tate’s model [36], now applied for ceramic targets.
Another goal is possible elucidation of the effects of differ-
ences, or lack thereof, among ceramic material properties
(inherently related to microstructure) on penetration resistance.

The main body of this paper is structured as follows. In §2,
one-dimensional penetration mechanics models are reviewed,
including key assumptions and governing equations. In §3,
dimensional analysis of the problem of penetration of thick
ceramic targets is performed. In §4, application of this dimen-
sional analysis to test data is reported. In §5, further analysis
and comparison of the present results with one-dimensional
penetration mechanics models and other experimental configu-
rations are undertaken. Conclusions follow in §6.

2. One-dimensional penetration mechanics

Presented next in §2.1 is a derivation of the governing equa-
tion for ideal hydrodynamic penetration of a semi-infinite target
by a jet or rod. This derivation provides a basis for the extended
descriptions and more elaborate models discussed in §2.2.

2.1. Ideal hydrodynamic theory

The ideal hydrodynamic theory of penetration of ductile
targets by shaped charge jets was developed around the Second

World War and years soon thereafter [32]. The assumptions
involved in the derivation are listed as follows: the penetration
process is steady-state and one-dimensional; the target is semi-
infinite; the projectile is a continuous jet; and both target and jet
materials are incompressible with null shear strength, thereby
acting as perfect fluids.

Let spatial coordinates at time t be denoted by x x X ti i I= ( ), ,
where reference coordinates of a material point are XI and in
general, i I, , ,=1 2 3. Particle velocity is

υi I
i IX t
x X t

t
,

,
( )=

∂ ( )
∂

(1)

Let σ ij denote the symmetric Cauchy stress tensor, and
p ii=− 1

3σ the Cauchy pressure. Let ρ denote the spatial mass
density. The local balance of linear momentum in continuum
mechanics is [43]

∂
∂

=
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∂
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i I

x

X t

t

,
(2)

In a Cartesian coordinate system, the particle acceleration is
the following material time derivative of the velocity
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For steady flow, υ υi i jx= ( ) and the first term on the right
side of Equation (3) vanishes, leading to
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∂ ( )
∂
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υ υ

υ υ υi I i j

j
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X t
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x

x x

, d
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(4)

For steady one-dimensional flow, i,I = 1 and Equation (2)
becomes, with σ σx x( )=− ( )11 the axial stress, positive in
compression,

− = ⇒− =
1

ρ
σ υ υ σ

ρ
υ υd

d

d

d

d
d

x x
(5)

Now assume that a jet or rod with initial velocity V
impinges on the target, an infinite half-space. The stagnation
point between projectile and target recedes with velocity U.
The axial stress P at the stagnation point in the projectile is
then found by integrating Equation (5) with ρ0 the projectile
density, which is assumed constant for incompressible flow,
leading to [44]

− = ⇒ = −( )∫ ∫
−

d dσ ρ υ υ ρ
0

0

0

0
21

2

P

V U

P V U (6)

Now considering the stagnation point in the target, which is
assumed incompressible with mass density ρT,

− = ⇒ =∫ ∫d dT Tσ ρ υ υ ρ
0

0

21

2

P

U

P U (7)

Equating P from Equations (6) and (7), and letting p = P for
inviscid flow (no shear stresses), Bernoulli’s equation for
steady hydrodynamic penetration is
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p P V U U= = −( ) =
1

2

1

2
0

2 2ρ ρT (8)

The time needed for a projectile of initial length L0 to fully
erode is t L U V0 0= −( ), and the depth of penetration is
P0 = U·t0. Using Equation (8), the normalized depth of penetra-
tion can be expressed completely in terms of the ratio of den-
sities of target and projectile

P

L

U

U V
0

0

0=
−

=
ρ
ρT

(9)

Though originally developed for penetration of metallic
targets by metallic jets, this model has been used, often with
success, for describing the steady penetration regime for long-
rod projectiles as well as brittle targets. Regardless, it serves as
a useful basis of comparison with experimental data and pre-
dictions of more complex theories and/or numerical
calculations.

2.2. Extended penetration models

Many analytical penetration mechanics models have used
the hydrodyamic theory derived in §2.1 as a foundation or
starting point. Birkhoff et al. [32] accounted for jet
particulation via incorporation of a shape factor λ that has a
value of one for continuous jets and two for dispersed particle
jets

λρ ρ λρ
ρ0

2 2 0

0

0V U U
P

L
−( ) = ⇒ =T

T

(10)

Pack and Evans [33,45] extended Equation (9) to allow for
secondary penetration (i.e., afterflow in addition to primary
penetration) r as well as an empirical correction for target
strength YT

P

L
a

Y

V

r

L
0

0

0

0
2

0

1= −
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

λρ
ρ ρT

T (11)

Here a is permitted to depend on target and jet densities, and
aY V kRT ρ0

2( )= , with k an empirical factor and R the work
per unit volume required for crater formation. Eichelberger [42]
added to Equation (8) a statistical factor γ and the net strength
difference YN = YT − Y0, with Y0 the jet strength

γρ ρ0
2 2 2V U U Y−( ) = +T N (12)

In the late 1960s, Alekseevski [35] and Tate [36] indepen-
dently derived theories for long-rod penetration of metallic
targets that considered deceleration of the rod due to strengths
of both projectile (Y0) and target (RT). The governing equation
for equal stresses in target and projectile at the stagnation point
can be derived by modifying the limits of integration in Equa-
tions (6) and (7) such that steady flow does not commence until
the stress reaches the strength/resistance of either material

− = ⇒ = −( ) +∫ ∫
−
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2
(14)

Equating axial stresses P then gives Tate’s extended Ber-
noulli equation

1

2

1

2
0

2
0

2ρ ρV U Y U R−( ) + = +T T (15)

The complete theory developed in References 35 and 36
includes differential equations for projectile deceleration and
erosion that must be integrated numerically to obtain depth of
penetration, except in very special/simple cases. However, if
deceleration is ignored, then the analytical solution for penetra-
tion depth is

P

L

U

U V

V A V

V V A

0

0

2

2

1
=

−
=

+ −

− +

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟μ

μ
μ

(16)

where

μ ρ ρ μ ρ= = −( ) −( )T T T0
2

02 1, A R Y (17)

The same result can be recovered from Equation (12) when
γ → 1 and YN → RT − Y0. Notice that Equation (16) reduces to
the hydrodynamic result of Equation (9) for very high velocities
or low material strengths, i.e., for V A2 � .

In Reference 46, the description of long-rod penetration was
extended to account for a transition from plastic deformation to
fluid flow at the head of the rod, with a transition velocity
derived depending on rod strength. In Reference 47, the gov-
erning Equation (15) for the steady penetration phase was
re-derived in the context of an assumed flow field for a perfectly
plastic target. Extension of the analysis to phases of unsteady
impact, plastic-wave dominated, and after-flow was presented
[48]. Numerical simulations [49] predicted that the entrance
phase of penetration provides little net effect on penetration
efficiency, while the end phase dominates overshoot of the
hydrodynamic limit for ductile metals subjected to
hypervelocity impact.

More elaborate analytical models considering momentum
exchange that relax assumptions of Tate’s original theory were
derived in References 34, 37 and 50; the latter [50] compares
analytical predictions with numerical results for metal rods
penetrating metal targets, demonstrating that target resistance
RT depends on the experimental configuration as well as target
material properties.

Walker and Anderson [38] derived a time-dependent model
for unsteady long-rod penetration of semi-infinite targets. This
model considers initial impact (requiring an initial interface
velocity from the shock jump conditions) as well as rod decel-
eration; assumptions are made on the plastic flow field in the
target (from a dynamic cavity expansion analysis) and velocity
profile in the projectile (from observations in numerical simu-
lations). For a limiting case, the analogy of Tate’s target resis-
tance was found to vary with the dynamic ratio β of plastic zone
size to cavity size, which decreases with increasing velocity V
for metallic targets

336 J.D. Clayton /Defence Technology 12 (2016) 334–342



R Y VT T= ( )[ ]
7

3
ln β (18)

A dimensional analysis of simulation results [51] for metals
showed that larger-scale targets tend to be weaker than their
small-scale counterparts due to rate and time-to-failure effects,
since longer times are available for damage mechanisms (shear
bands, fractures, etc.) to incubate and propagate in larger
targets. This phenomenon was also observed in experiments of
penetration of layered ceramic–metal systems [52]. Experi-
ments and hydrocode simulations showed importance of
strengths of both target and projectile over a range of impact
velocities, with strength effects increasing with decreasing
impact velocity [53]. Simulations also demonstrated a relatively
small effect of compressibility on penetration for very ductile
metallic targets except at very high velocities [54].

In another analysis of long-rod impact data, a two-regime
model was developed to study the transition from plastically
deforming rods to eroding penetration [55]. Recently, a three-
regime model has been used to address the transition from rigid,
to non-eroding but deforming, to eroding, long rods with
increasing impact velocity [56]. Both of the latter two mentioned
approaches are most relevant for rod materials of higher strength
than target materials (e.g., tungsten impacting aluminum [55])
and less so for hypervelocity impact of metal projectiles into
harder ceramic targets of current interest [6,39–41] wherein rod
erosion dominates the nearly steady penetration process.

3. Dimensional analysis: general

Buckingham’s pi theorem is now applied toward dimen-
sional analysis of mechanics of long-rod penetration. Bucking-
ham’s pi theorem applied to any physical system can be
described generically as follows [57–59]. See also the discus-
sion on similitude concepts in Reference 60. If an equation
involving n variables is dimensionally homogeneous, it can be
reduced to an equation among n − k independent dimensionless
products, with k being the number of independent reference
dimensions needed to characterize all of the variables. In
dimensional, rather than dimensionless form, let

y f x x xn= ( )2 3, , ,… (19)

where y is the dependent variable and x2,. . .,xn are independent
quantities, some of which may be independent variables and
others constants in a given problem. Equation (19) can be
converted to dimensionless form as

Π Π Π Π1 2 3= ( )−ϕ , , ,… n k (20)

where Π1 is the dimensionless analog of y and function φ
depends on n − k − 1 of other dimensionless products (i.e., pi
terms) constructed from the original set y x x xn, , , ,2 3 …{ }.
Normalization of all variables entering φ should, for
convenience, be completed via only the set x x xn2 3, , ,…{ } such
that independent variable y appears only once, on the left side of
the governing equation.

In this paper, the ballistic penetration problem to which
Buckingham’s theorem is applied is illustrated in Fig. 1. The
experimental set-up, as discussed for example in References 4,

6, 7, 39–41, consists of a rod of initial length L0 impacting a
thick (effectively semi-infinite) ceramic target at velocity V0,
with the cylindrical ceramic target encased in a metallic sleeve
and cover plate that provide confinement. The experiment is
performed in reverse ballistic fashion, meaning that the ceramic
target package is launched at the rod in a light gas gun. The
present analysis is restricted to normal impact, i.e., in principle
null obliquity. Performance of the ceramic target is measured by
residual penetration depth P0, with penetration resistance
decreasing with increasing P0.

In dimensional form, penetration depth is expressed as the
following function of impact velocity, geometric variables {g},
and material property variables {m}, letting respective sub-
scripts 0 and T denote penetrator, ceramic target

P P V g m g m0 0 0 0 0= { } { } { } { }( ), , , ,T T (21)

Possible lateral and frontal confinement is included in the set
of target geometric variables. In subsequent analysis,
application/fitting of Equation (21) is restricted to experimental
data sets for which the projectile and target geometries remain
fixed or nearly so. Further letting g L{ } →0 0, Equation (21)
reduces under these assumptions to

P P V L m m0 0 0 0 0= { } { }( ), , , T (22)

A reduced form of Equation (22) is required in the context of
dimensional analysis. Presumably, this reduced equation should
satisfy the following conditions: (i) it should be a dimensionless
function of dimensionless quantities, (ii) it should yield the
penetration depth into a perfect inviscid and incompressible fluid
as V0 →∞, and (iii) it should satisfy observed physics of the
problem, notably a decreasing primary penetration depth with
decreasing V0 relative to the ideal hydrodynamic solution given by
Equation (9), as will be demonstrated explicitly in the context of
experimental results analyzed later in §4. In order to satisfy these
requirements with minimal complexity, the following material
parameters are introduced: the strength Y0 of the projectile, the

Fig. 1. Reverse ballistic experiment. Long-rod penetration into encased thick
ceramic target(s); dimensions in inches (mm). Reproduced from Reference 6
with permission from Elsevier Science.
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mass densities of the projectile and target ρ0 and ρT, and a series of
z dimensionless constants α l l z, , , , ,= 0 1 2 … that potentially
depend only on the target material (i.e., type of ceramic).
In other words, m Y{ } →{ }0 0 0ρ , and m l{ } →{ }T Tρ α, . In
dimensional form, Equation (22) then becomes

P P V L Y l zl0 0 0 0 0 0 0 1 2= =( )[ ], ; , ; , , , , ,ρ ρ αT … (23)

Each application of Equation (23) is further restricted to data
sets for which the penetrator’s geometry is fixed, such that
L0 = constant is used only to normalize P0 as is conventional in
analysis of ballistic data [4,37,51] and, e.g., in Equation (9). The
now-posited dimensionless form [requirement (i)] of the pen-
etration depth equation is

P

L

Y

V
l l

0

0 0

0

0 0
2

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
= ( )ϕ ρ

ρ ρ
α ϕ μ χ αT , , , , (24)

Recall μ is first defined in Equation (17). Dimensionless

variable χ ρ= ( )Y V0 0 0
2 , a function only of penetrator char-

acteristics, is defined here. In the context of Buckingham’s
theorem, three independent dimensions (mass, length, and
velocity) enter the variables considered in Equation (23), so
k = 3. The total number of pi terms is n = 7 + z, and the number
of independent dimensionless terms is thus n k z− − = +1 3 ,
consistent with the number of independent variables on the
right side of dimensionless Equation (24). Requirement (ii)
implies

P L l0 0 0 1( ) = ( )= ( )=∞ ∞ϕ μ α ϕ μ μ, , (25)

where φ∞ is the dimensionless penetration depth in the limit of
infinite impact velocity (χ → 0) given by Equation (9).
Requirement (iii) suggests a power series in χ of the following
form

P

L

Y

V

Y

V
l

l

l

z

0

0
0

0
1

0

0 0
2 2

0

0 0
2

1
1= = = + + +
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

=
∑ϕ

μ
α χ ρ

ρ
α

ρ
α

ρT

�

(26)

where α0 = 1 to satisfy Equation (25). Note that if z = 1, then
α1 < 0 to satisfy requirement (iii). Application of Equation (26)
to data in §4 demonstrates that z = 1 is sufficient to describe

penetration depth over hypervelocity impact regimes for
ceramic materials and target configurations of present interest,
as will be shown explicitly later. Notice also that making
particular choices α α1 2 00= =−, aY YT recovers the form in
Equation (11) [33] in the absence of secondary penetration
(r = 0), for steady projectile velocity (V0 = V) and a continuous
projectile (λ = 1).

4. Dimensional analysis: application to experimental data

The dimensional analysis framework developed in §3 is now
applied to the experimental penetration data of Subramanian
and Bless [6] and Orphal et al. [39–41]. As mentioned already
in the context of Fig. 1, all such reverse ballistic experiments
involve long-rod hypervelocity impact and penetration into
confined cylindrical ceramic targets. Important characteristics
of experiments reported in each reference are listed in Table 1.
Projectile properties are listed in Table 2, corresponding to
relatively pure polycrystalline tungsten. The strength value
Y0 = 2.0 GPa is consistent with that used in References 39–41
and dynamic yield reported in Reference 14. With a few excep-
tions, most experiments consider long rods with length-to-
diameter ratios of L0/D0 = 20; impact velocities V0 range from
1.5 to 5.0 km/s. Target resistance values RT entering Equation
(15) as reported in the experimental references are listed in the
rightmost column of Table 1.

Normalized primary penetration depths are fit to cubic equa-
tions in References 39–41 with corresponding fitting param-
eters βi i, , , ,=( )0 1 2 3 listed in Table 1

P L V V V V0 0 0 1 0 2 0
2

3 0
3

0= + + + [ ]β β β β , in km s (27)

The same cubic equation is also used to fit alumina data of
Reference 6, with parameters βi determined newly here by
regression. Also listed in Table 1 is the value of dimensionless
parameter α1 of Equation (26) used to fit the experimental data
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As demonstrated in the context of Figs. 2, 3, 4, and 5,
truncation of Equation (26) at order one (i.e., a linear fit with
respect to inverse impact velocity) is sufficient to accurately fit

Table 1
Ballistic penetration experiments.

Experiment D0 mm L0/D0 V0
1km s⋅( )− Target material β β β β0 1 2 3, , , RT GPa α

Subramanian & Bless [6] 0.762 20 1.5–3.5 Alumina ( Al O2 3) 4.871, −6.375, 2.995, −0.407 7.0–9.0 3.6
Orphal et al. [39] 0.762 20, 15 1.5–4.5 Aluminum nitride (AlN) −1.258, 1.842, −0.342, 0.022 5.0–9.0 2.9
Orphal & Franzen [40] 0.762 20, 15 1.5–4.6 Silicon carbide (SiC) 0.747, −0.049, 0.185, −0.024 5.0–9.0 3.1
Orphal et al. [41] 0.762, 1.02 20, 15 1.5–5.0 Boron carbide (B4C) −1.213, 2.178, −0.512, 0.044 5.0–9.0 2.9

Table 2
Projectile material properties.

Material Density ρ0 /(g·cm−3) Strength Y0/GPa Structure Inelasticity Reference

Tungsten (W) 19.3 2.0 Body-centered-cubic Slip, fracture [14]
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all experimental data. Specifically, α is fit to each experimental
data set by minimizing the error

Error d
model cubic cubic

= ( ) −( ) ( )[ ]∫ P P P V0 0 0 0 (29)

where P0( )model is given by Equation (28) and P0( )cubic by
Equation (27), and the domain of integration corresponds to
velocity ranges listed in Table 1. Also considered later is a
universal fit of Equation (28) with a single best value of α = 3.0
obtained by minimizing the sum of errors [computed using
Equation (29)] for all four data sets involving four different
ceramic target materials.

Properties of ceramic materials comprising each target are
given for reference in Table 3. Initial mass density ρT, elastic
(Young’s) modulus E, Poisson’s ratio ν, fracture toughness KC,
compressive strength σC, bending strength σB, and Vicker’s
hardnessHV are static material properties. The Hugoniot Elastic
Limit (HEL) σH and dynamic shear strength τ of the shocked
ceramic – the latter defined in Reference 61 from the intersec-
tion of the elastic line with the failed strength curve of the
shocked material – are dynamic properties. Lattice parameters
are a and c. Variations among ceramics’ properties – which are
intrinsically related to their microstructures – are common as
evidenced by ranges reported in Reference 68, for example. All
of these ceramics undergo fracture when subjected to dynamic
loading of sufficient magnitude; other known inelastic defor-
mation mechanisms are listed in the second column from the
right, where slip and twinning refer to dislocation glide and
mechanical twinning [43], respectively. The phase change in
AlN occurs at pressures around 20 GPa. Amorphization in B4C
is a stress-induced change from trigonal crystal structure to a
non-crystalline solid phase [16].

Experiments and model fits are compared in Fig. 2 for
alumina, Fig. 3 for aluminum nitride, Fig. 4 for silicon carbide,
and Fig. 5 for boron carbide. Raw data points are included in
Fig. 2 since these are tabulated in Reference 6; data points are
not tabulated in other experimental sources [39–41] and hence
are not included in corresponding Figs. 3, 4, and 5. Importantly,
for each material, the fit using a universal value of α = 3.0 is
very nearly as accurate as that which minimizes the error
(Equation 29) for each material individually. As reported in
References 6,39–41, the following features also characterize
most experiments analyzed here: the penetration process is
steady; the relationship between target velocityU and projectile

velocity V is usually linear; the relationship between penetra-
tion depth and time is usually linear; the rod is completely
eroded by the end of each experiment; some secondary pen-
etration occurs, such that the total penetration depth exceeds the
primary penetration depth. Notice from Figs. 2, 3, 4, and 5 that
the hydrodynamic limit penetration depth of Equation (9) is
approached with increasing V0 but is never achieved for any
target configuration over the range of impact velocities consid-

Table 3
Representative ceramic material properties.

Material Density
ρT/(g·cm−3)

Modulus
E/GPa

Poisson
ratio ν

Tough
KC MPa m

Compress
σC GPa

Bend
σB GPa

Hard
HV/GPa

HEL
σH/GPa

Dyn. str.
2τ GPa

Structure
c a, nm

Inelastic
deformation

References

Al O2 3 3.89 373 0.23 4.5 2.6 0.38 14.1 7.6 5.3 Trigonal
1.3, 0.5

Slip, twinning [27,61–63]

AlN 3.24 315 0.24 2.7 2.1 0.35 11.5 9.4 6.0 Hexagonal
0.5, 0.3

Slip, phase
change

[24,64,65]

SiC 3.22 453 0.16 5.1 3.4 0.40 27.4 15.7 11.4 Hexagonal
1.5, 0.3

Slip [25,61,66]

B4C 2.51 461 0.17 3.1 2.8 0.40 31.4 16.0 7.1 Trigonal
1.2, 0.6

Amorphization [61,66,67]

Fig. 2. Aluminum oxide. Comparison of experimental results – raw data of
Reference 6 and cubic fit (Equation 27) – with those of the presently proposed
dimensionless model (Equation 28). Hydrodynamic limit penetration depth is
μP0/L0 = 1 (see Equation 9).

Fig. 3. Aluminum nitride. Comparison of experimental results – cubic fit of
Reference 39 and Equation (2) – with those of the presently proposed dimen-
sionless model (Equation 28). Hydrodynamic limit penetration depth is μP0/
L0 = 1 (see Equation 9).

339J.D. Clayton /Defence Technology 12 (2016) 334–342



ered. Setting P0/L0 = 0 in Equation (28) results in the following
limit velocity below which penetration should not occur

V Y0 0 0( ) =
limit

α ρ (30)

With α = 3 and tungsten rod properties of Table 2, the pre-
dicted limit velocity is 0.97 km/s for the present target–
projectile combinations. It is cautioned, however, that the
present analysis has only been verified for impact velocities at
or exceeding V0 = 1.5 km/s, so this limit is an obvious extrapo-
lation of the model in Equation (28).

5. Further analysis and discussion

The primary discovery of the present work is that normal-
ized penetration data for all four ceramic target materials –
alumina, aluminum nitride, silicon carbide, and boron carbide –
can be described well using new dimensionless Equation (28)
with a single fitting parameter, α, taking a universal value of
3.0. With α thus independent of target material, penetration
depth depends only on the (fixed) properties of the projectile (Y0

and ρ0) and the density of the ceramic target which enters the
ratio μ ρ ρ= T 0 . With this supposition in place, static and
dynamic strength properties and mechanisms listed in Table 3
would seem to be of little influence on penetration depth for the
present test configuration, since otherwise α would tend to vary
among materials with different physical properties, underlying
microstructures, and dominant deformation mechanisms. Fur-
thermore, α would seem to be unrelated to dynamic viscosity of
the ceramic material, since penetration depth results reported
for aluminum nitride [39] and boron carbide [41] suggest
similar trends for larger-scale tests. If α were to depend on
viscosity or failure kinetics, then test results would not demon-
strate such scaling since larger scale tests involve longer time
scales and lower average strain rates [51]. Instead, α must
depend on ceramic/target properties that do not vary strongly
with material type or with average strain rate. Such properties
are unresolved at present, and further speculation on the physi-
cal origin of resistance parameter α is not supported by the
existing results. In future work, parametric numerical simula-
tions wherein material properties can be varied systematically
and at low cost should provide further insight.

Comparison of the present findings with those of a recent
dimensional analysis [5] of a different target configuration and
velocity regime is in order. The latter configuration, as
explained in References 4 and 5, consists of one or more
ceramic tiles backed by a semi-infinite metal block. Perfor-
mance is measured by the depth of penetration of the projectile
into the backing metal. In Reference 5, dimensional analysis
determined that penetration of rather thin, metal-backed
ceramic tiles could be described by two parameters that do
depend on the type of ceramic material. The first, needed for
describing the effect of ceramic tile thickness, was found to be
associated with the ratio of surface energy (i.e., fracture tough-
ness) to elastic modulus. The second, needed to describe the
relationship between penetration depth and impact velocity,
was related to the ratio of dynamic shear strength τ to target
density. Impact velocities ranged from 0.6 to 3.0 km/s, and
projectiles had typical L0/D0 ratios on the order of 4 [69]. In
contrast, the present experiments involve thick, confined
ceramic targets (effectively semi-infinite) with somewhat
longer projectiles and higher impact velocities, with penetration
depth depending primarily on target material only through its
mass density. Therefore, comparison of the dimensional analy-
sis reported here and in Reference 5 suggests a transition from
fracture- and dynamic strength-controlled target resistance to
mass density-controlled target resistance with increasing
impact velocity and ceramic target thickness or confinement.

It is instructive to consider the present penetration depth
Equation (28) in the context of models of Eichelberger,
Alekseevskii, and Tate [35,36,42]. Define RN = RT − Y0 as a net
target–projectile resisting stress.Then Equation (15) can bewritten

ρ ρ0
2 2 2V U U R−( ) = +T N (31)

which is very similar to Equation (12) when γ = 1. Using the

series expansion 1 1 2 1 3
2

2+ = − + −x x x �, normalized
penetration depth for steady penetration throughout the entire

Fig. 4. Silicon carbide. Comparison of experimental results – cubic fit of Ref-
erence 40 and Equation (27) – with those of the presently proposed dimension-
less model (Equation 28). Hydrodynamic limit penetration depth is μP0/L0 = 1
(see Equation 9).

Fig. 5. Boron carbide. Comparison of experimental results – cubic fit of Ref-
erence 41 and Equation (27) – with those of the presently proposed dimension-
less model (see Equation 28). Hydrodynamic limit penetration depth is μP0/
L0 = 1 (see Equation 9).
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time of target–projectile interaction (V = V0) is then calculated
as
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Then, equating like terms in Equations (28) and (32) gives,
with α = − α1,
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N Tρ

α ρ αμ ρ
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0 0
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2

= ⇒ = (33)

Successive approximations U V V≈ ≈ +κ μ
1

1 [70] result in a
linear dependence of target resistance on velocity if Y0 is pre-
sumed constant

R R Y Y V Y Y V YT N T
T= + ≈ + ≈

+( )
+0 0

2
0 0 0 2 0

1
αμ ρ κ α ρ ρ

μ
(34)

This result, which relies on linearization and several
intermediate mathematical reductions, can be positively compared
with the experimental results for silicon carbide and boron carbide
[40,41], which show a nonlinearly increasing relation between RN

and impact velocity, and contrasted with the Walker–Anderson
theory in Equation (18) that predicts, for ductile metallic targets, a
decreasing RT with increasing impact velocity. The ceramic-
dependent term in the last of Equation (34), ρ μT 1 2+( ) , varies
only from 1.35 to 1.85 g/cm3 for the different target materials
considered herein. Therefore, consistent with experimental
findings, a nearly constant value of α among all four ceramics
to be used in Equation (34) correlates well with the very similar
ranges of target resistance RT ≈ 5.0–9.0 GPa reported in
experiments for all four ceramics as listed in Table 1.

For thick ceramic targets impacted at high velocities, the
present analysis, as noted above, suggests that primary penetra-
tion depth P0 depends on ceramic type almost exclusively on
mass density ρT, specifically via P0

1 2∝ −ρT . Consider two
target tiles of different ceramic materials of the same surface
area. The ratio of masses of the two tiles is directly proportional
to the ratio of areal densities ρT·h, with h the thickness. Now
assume that h is sufficient to enable semi-infinite conditions as
addressed by the analysis herein, with each tile of the same
(large) thickness. Then the ratio of penetration depths into the
two different targets should scale simply and inversely with
ratio of square roots of masses of the two targets.

It should be emphasized that the present analysis, including
the main result given by Equation (28) with α = 3 for all four
ceramics considered, applies most strictly only for tests in
which projectile and target geometries and projectile material
are held fixed. Furthermore, impact velocities to which the
analysis holds are restricted to the range 1.5–5.0 km/s. Target
materials are strong ceramics, such that penetration conditions
are steady and eroding. Additional experiments and corre-
sponding analysis are required to verify or refute the use of
Equation (28) for other test conditions.

6. Conclusions

Dimensional analysis has been invoked in a new study of
ballistic penetration of ceramic materials. In particular, data
considered here involve primary penetration depths into thick
ceramic targets of alumina (high purity), aluminum nitride,
silicon carbide, and boron carbide struck by tungsten long rods
at impact velocities spanning 1.5–5.0 km/s. Data sets from four
independent experimental investigations from the literature
have been analyzed.

Application of Buckingham’s pi theorem in conjunction with
several physical assumptions has resulted in a dimensionless
penetration depth depending on projectile mass density and
strength, target mass density, and a power series of dimensionless
parameters in terms of inverse impact velocity. The test data have
been accurately fit using only the first (linear) term in this series,
with a single value of the corresponding dimensionless fitting
parameter used successfully for all four ceramic target materials
when other aspects of the test configuration (e.g., penetrator and
target dimensions) are held fixed in an experimental series.
Comparison with one-dimensional extensions to hydrodynamic
theory has demonstrated a dependence of Tate’s target resistance
on impact velocity, where a linear relation applies to first order.
Consideration of the current results with those of prior
dimensional analysis of thin, metal-backed ceramic targets
confirms existence of a transition from fracture- and strength-
controlled resistance to mass density-controlled resistance with
increasing average impact velocity and target thickness.
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